Respuesta :

Step-by-step explanation:

Given: X is midpoint of UV and Y is midpoint of VW.

[tex] \therefore XY || UW[/tex]

(By mid-point theorem)

[tex]\therefore \angle XYV \cong \angle UWY\\.. (corresponding\: \angle 's) \\\therefore m\angle XYV = m\angle UWY\\

\therefore 98 - 6x = 63- x\\

\therefore 98 - 63= 6x- x\\

\therefore 35= 5x\\\\

\therefore x = \frac{35}{5}\\\\

\huge \orange {\boxed {\therefore x = 7}} \\\\

m\angle UWY = (63 - x) °\\\\

\therefore m\angle UWY = (63 - 7) °\\\\

\huge \purple {\boxed {\therefore m\angle UWY = 56 °}}

[/tex]