Respuesta :

Answer:

Both sides =  [tex]\frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}[/tex]

Step-by-step explanation:

Let us revise some identity

sin(∝ + a) = sin(∝) cos(a) + cos(∝) sin(a)

cos(∝ + a) = cos(∝) cos(a) - sin(∝) sin(a)

tan ∝ = [tex]\frac{sin(\alpha)}{cos(\alpha)}[/tex]

Let us simplify each side

Left hand side

∵ [tex]tan(\alpha+\frac{\pi }{4})=\frac{sin(\alpha+\frac{\pi }{4})}{cos(\alpha+\frac{\pi}{4})}[/tex]  ⇒ (1)

∵ [tex]sin(\alpha+\frac{\pi}{4})=sin(\alpha )cos(\frac{\pi}{4})+cos(\alpha)sin(\frac{\pi}{4})[/tex] ⇒ (2)

∵ [tex]sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2}[/tex] and  [tex]cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}[/tex]

- Substitute them in (2)

∴ [tex]sin(\alpha+\frac{\pi}{4})=sin(\alpha )(\frac{\sqrt{2}}{2})+cos(\alpha)(\frac{\sqrt{2} }{2})[/tex]

∴ [tex]sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})sin\alpha +(\frac{\sqrt{2} }{2})cos\alpha[/tex]

- Take [tex]\frac{\sqrt{2}}{2}[/tex] as a common factor

∴ [tex]sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(sin\alpha +cos\alpha)[/tex] ⇒ (3)

∵ [tex]cos(\alpha+\frac{\pi}{4})=cos(\alpha )cos(\frac{\pi}{4})-sin(\alpha)sin(\frac{\pi}{4})[/tex] ⇒ (4)

∵ [tex]cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}[/tex] and  [tex]sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2}[/tex]

- Substitute them in (4)

∴ [tex]cos(\alpha+\frac{\pi}{4})=cos(\alpha )(\frac{\sqrt{2}}{2})-sin(\alpha)(\frac{\sqrt{2}}{2})[/tex]

∴ [tex]cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})cos\alpha-(\frac{\sqrt{2} }{2})sin\alpha[/tex]

- Take [tex]\frac{\sqrt{2}}{2}[/tex] as a common factor

∴ [tex]cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha)[/tex] ⇒ (5)

Substitute (3) and (5) in (1)

∴  [tex]tan(\alpha+\frac{\pi }{4})=\frac{\frac{\sqrt{2}}{2}(sin\alpha+cos\alpha)}{\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}[/tex]

- Simplify it by divide up and down by [tex]\frac{\sqrt{2}}{2}[/tex]

∴ [tex]tan(\alpha+\frac{\pi }{4})=\frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}[/tex]

∴ Left hand side = [tex]\frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}[/tex]

Right hand side

Right hand side =  [tex]\frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}[/tex]  ⇒ (1)

∵ [tex]cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )cos(\frac{5}{4}\pi )+sin(\alpha)sin(\frac{5}{4}\pi)[/tex] ⇒ (2)

∵ [tex]cos(\frac{5}{4}\pi )=-\frac{\sqrt{2}}{2}[/tex] and  [tex]sin(\frac{5}{4}\pi)=-\frac{\sqrt{2}}{2}[/tex]

- Substitute them in (2)

∴ [tex]cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )(-\frac{\sqrt{2}}{2})+sin(\alpha)(-\frac{\sqrt{2}}{2})[/tex]

∴ [tex]cos(\alpha-\frac{5}{4}\pi )=(-\frac{\sqrt{2}}{2})cos\alpha+(-\frac{\sqrt{2} }{2})sin\alpha[/tex]

- Take [tex]-\frac{\sqrt{2}}{2}[/tex] as a common factor

∴ [tex]cos(\alpha-\frac{5}{4}\pi)=(-\frac{\sqrt{2}}{2})(cos\alpha+sin\alpha)[/tex] ⇒ (3)

∵ [tex]cos(\frac{3}{4}\pi-\alpha)=cos(\frac{3}{4}\pi)cos(\alpha)+sin(\frac{3}{4}\pi)sin(\alpha)[/tex] ⇒ (4)

∵ [tex]cos(\frac{3}{4}\pi )=-\frac{\sqrt{2}}{2}[/tex] and  [tex]sin(\frac{3}{4}\pi)=\frac{\sqrt{2}}{2}[/tex]

- Substitute them in (4)

∴ [tex]cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})cos(\alpha)+(\frac{\sqrt{2}}{2})sin(\alpha)[/tex]

- Take [tex]-\frac{\sqrt{2}}{2}[/tex] as a common factor

∴ [tex]cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha)[/tex] ⇒ (5)

Substitute (3) and (5) in (1)

∴  [tex]\frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}[/tex]   =  [tex]\frac{-\frac{\sqrt{2}}{2}(cos\alpha+sin\alpha)}{-\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}[/tex]

- Simplify it by divide up and down by [tex]-\frac{\sqrt{2}}{2}[/tex]

∴  [tex]\frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}[/tex]   =  [tex]\frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}[/tex]

∴ Right hand side = [tex]\frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}[/tex]

∵ cos∝ + sin∝ = sin∝ + cos∝

∴ Left hand side = Right hand side

The identity is verified