Respuesta :
Answer: It will take Nico approximately 12 years
Explanation:
Payments = $40000
r = 12%
Future Value = 1000 000
Future Value annuity = Payments((1 + r)^n - 1)/r
1000000 = 40000((1 + 0.12)^n - 1)/0.12
40000((1.12)^n - 1) = 1000000 x 0.12
(1.12)^n -1 = 120000/40000
(1.12)^n = 3 + 1
nlog(1.12) = log(4)
n = log(1.12)/log(4) = 12.232510748
n ≈ 12 years
It will take Nico approximately 12 years
Answer:
12.29 years
Explanation:
to determine the number of years (n) we can use the future value formula for an annuity:
future value of an annuity = payment x [(1 + r)ⁿ - 1] / r
- r = 12%
- payment = 40,000
- future value = 1,000,000
1,000,000 = 40,000 x [(1 + 12%)ⁿ - 1] / 12% = 40,000 x (1.12ⁿ - 1) / 12%
(1.12ⁿ - 1) = 1,000,000 x 12% / 40,000
(1.12ⁿ - 1) = 3
1.12ⁿ = 3 + 1 = 4
nlog1.12 = log4
n = log4 / log1.12 = 0.602 / 0.049 = 12.29 years