. A bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in joules, must be released by an electron in a mercury atom to produce a photon of this light?

Respuesta :

Answer :  The energy released by an electron in a mercury atom to produce a photon of this light must be, [tex]4.56\times 10^{-19}J[/tex]

Explanation : Given,

Wavelength = [tex]435.8nm=435.8\times 10^{-9}m[/tex]

conversion used : [tex]1nm=10^{-9}m[/tex]

Formula used :

[tex]E=h\times \nu[/tex]

As, [tex]\nu=\frac{c}{\lambda}[/tex]

So, [tex]E=h\times \frac{c}{\lambda}[/tex]

where,

[tex]\nu[/tex] = frequency

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

[tex]\lambda[/tex] = wavelength = [tex]435.8\times 10^{-9}m[/tex]

c = speed of light = [tex]3\times 10^8m/s[/tex]

Now put all the given values in the above formula, we get:

[tex]E=(6.626\times 10^{-34}Js)\times \frac{(3\times 10^{8}m/s)}{(435.8\times 10^{-9}m)}[/tex]

[tex]E=4.56\times 10^{-19}J[/tex]

Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be, [tex]4.56\times 10^{-19}J[/tex]