A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the final number of microstates is 0.559 times that of the initial number of microstates?

Respuesta :

Explanation:

According to Boltzmann formula of entropy,

                      S = K ln(W)

where,     S = Entropy

        K = Boltzmann constant = [tex]1.381 \times 10^{-23} JK^{-1}[/tex]

         W = Number micro-states

This equation is valid if total energy is constant and we are assuming here that the total energy is constant over here.

Let initial [tex]W_{i}[/tex] = 1 then final [tex]W_{f}[/tex] = 0.487

Now,   [tex]\Delta S = K (ln W_{f} - ln W_{i})[/tex]

                         = [tex]1.381 \times 10^{-23} (ln(0.487) - ln(1) )[/tex]

                         = [tex]1.381 \times 10^{-23} \times (-0.71949) [/tex]

                         = [tex]-9.936 \times 10^{-24} JK^{-1}[/tex]