A milling operation was used to remove a portion of a solid bar of square cross section. Forces of magnitude P = 18 kN are applied at the centers of the ends of the bar. Knowing that a = 30 mm and σall = 135 MPa, determine the smallest allowable depth d of the milled portion of the bar.

Respuesta :

The smallest allowable depth is [tex]d=16.04 \mathrm{mm}[/tex] for the milled portion of bar.

Explanation:

Given,

Magnitude of force,[tex]\mathbf{p}=18 \mathrm{kN}[/tex]

[tex]a=30 \mathrm{mm}[/tex]

[tex]=0.03 \mathrm{m}[/tex]

Allowable stress,[tex]\sigma_{a l l}=135 \mathrm{MPa}[/tex]

cross sectional area of bar,

[tex]A=a \times d[/tex]

[tex]A=a d[/tex]

e - eccentricity

[tex]e=\frac{a}{2}-\frac{d}{2}[/tex]

The internal forces in the cross section are equivalent to a centric force P and a bending couple M.

[tex]M=P e[/tex]

[tex]=P\left(\frac{a}{2}-\frac{d}{2}\right)[/tex]

[tex]=\frac{P(a-d)}{2}[/tex]

Allowable stress

[tex]\sigma=\frac{P}{A}+\frac{M c}{I}[/tex]

[tex]c=\frac{d}{2}[/tex]

Moment of Inertia,

[tex]I=\frac{b d^{3}}{12}[/tex]

[tex]=\frac{a d^{3}}{12}[/tex]

[tex]\therefore \sigma=\frac{P}{a d}+\frac{\frac{P(a-d)}{2} \times \frac{d}{2}}{\frac{a d^{3}}{12}}[/tex]

[tex]\sigma=\frac{P}{a d}+\frac{3 P(a-d)}{a d^{2}}\\[/tex]

[tex]\sqrt{x} \sigma\left(a d^{2}\right)=P d+3 P(a-d)[/tex]

[tex]\sigma\left(a d^{2}\right)=P d+3 P a-3 P d[/tex]

[tex]\sigma\left(a d^{2}\right)=(P-3 P) d+3 P a[/tex]

[tex]\left(\sigma a d^{2}\right)=-2 P d+3 P a[/tex]

[tex]\sigma d^{2}=-\frac{2 P}{a} d+3 P[/tex]

By substituting values we get,

[tex]\left(135 \times 10^{6}\right) d^{2}+\frac{2 \times 18 \times 10^{3}}{0.03} d-3\left(18 \times 10^{3}\right)=0[/tex]

[tex]\left(135 \times 10^{6}\right) d^{2}+\left(12 \times 10^{5}\right) d-54 \times 10^{3}=0[/tex]

On solving above equation we get,[tex]d=0.01604 \mathrm{m}\\[/tex]

[tex]d=16.04 \mathrm{mm}[/tex]

Otras preguntas