Respuesta :

Answer:

Step-by-step explanation:

According to given data the arrangement of the matrices are as follow:

Matrix A = [tex]\left[\begin{array}{ccc}1&7&-1\\1&1&1\\1&-1&0\end{array}\right][/tex]

Matrix B = [tex]\left[\begin{array}{ccc}1&-1&0\\1&1&1\\1&7&-1\end{array}\right][/tex]

Given Equation

EA = B

E = B / A

By placing the Matrices in the equation

E = [tex]\frac{\left[\begin{array}{ccc}1&-1&0\\1&1&1\\1&7&-1\end{array}\right]}{\left[\begin{array}{ccc}1&7&-1\\1&1&1\\1&-1&0\end{array}\right]}[/tex]

E = [tex]\left[\begin{array}{ccc}1/1&-1/7&0/-1\\1/1&1/1&1/1\\1/1&7/-1&-1/0\end{array}\right][/tex]

Matrix E = [tex]\left[\begin{array}{ccc}1&-1/7&0\\1&1&1\\1&-7&∞\end{array}\right][/tex]

By diving -1 by 0, the result is an undefined or infinity value, a infinity sign was places in the matrix which is shown as "a".

Answer:

Elementary matrix is;

E = {0 0 1}

{0 1 0}

{1 0 0}

Step-by-step explanation:

Since we are to find EA = B,thus E = B/A

So in matrix laws; B/A = B(A^(-1))

Now, (A^(-1)) =

(1/10){ 1 1 8 }

(1/10){ 1 1 -2 }

(1/10){ -2 8 -6 }

Where 1/10 is 1/determinant of A

B matrix is;

{ 1 -1 0 }

{ 1 1 1 }

{ 1 7 -1 }

So; B(A^(-1)) gives;

0 0 1

0 1 0

1 0 0