Respuesta :
Answer:
Step-by-step explanation:
According to given data the arrangement of the matrices are as follow:
Matrix A = [tex]\left[\begin{array}{ccc}1&7&-1\\1&1&1\\1&-1&0\end{array}\right][/tex]
Matrix B = [tex]\left[\begin{array}{ccc}1&-1&0\\1&1&1\\1&7&-1\end{array}\right][/tex]
Given Equation
EA = B
E = B / A
By placing the Matrices in the equation
E = [tex]\frac{\left[\begin{array}{ccc}1&-1&0\\1&1&1\\1&7&-1\end{array}\right]}{\left[\begin{array}{ccc}1&7&-1\\1&1&1\\1&-1&0\end{array}\right]}[/tex]
E = [tex]\left[\begin{array}{ccc}1/1&-1/7&0/-1\\1/1&1/1&1/1\\1/1&7/-1&-1/0\end{array}\right][/tex]
Matrix E = [tex]\left[\begin{array}{ccc}1&-1/7&0\\1&1&1\\1&-7&∞\end{array}\right][/tex]
By diving -1 by 0, the result is an undefined or infinity value, a infinity sign was places in the matrix which is shown as "a".
Answer:
Elementary matrix is;
E = {0 0 1}
{0 1 0}
{1 0 0}
Step-by-step explanation:
Since we are to find EA = B,thus E = B/A
So in matrix laws; B/A = B(A^(-1))
Now, (A^(-1)) =
(1/10){ 1 1 8 }
(1/10){ 1 1 -2 }
(1/10){ -2 8 -6 }
Where 1/10 is 1/determinant of A
B matrix is;
{ 1 -1 0 }
{ 1 1 1 }
{ 1 7 -1 }
So; B(A^(-1)) gives;
0 0 1
0 1 0
1 0 0