Respuesta :
The area of a shape is the amount of space it occupies.
- The length of wire used for the square is 13.45 ft
- The length of wire used for the circle is 10.55 ft
The given parameter is:
[tex]\mathbf{l = 24}[/tex] -- the length of the original wire
Assume the length that makes up the square is x.
So, we have:
[tex]\mathbf{y = \frac x4}[/tex] --- length of one side
[tex]\mathbf{A_1 = \frac{x^2}{16}}[/tex] --- area of the square
The circumference of the circle would be:
[tex]\mathbf{C = 24 - x}[/tex]
The circumference is calculated using:
[tex]\mathbf{C = 2\pi r}[/tex]
So, we have:
[tex]\mathbf{2\pi r = 24 - x}[/tex]
Make r the subject
[tex]\mathbf{r = \frac{24 - x}{2\pi }}[/tex]
The area of the circle is:
[tex]\mathbf{A_2 = \pi \times (\frac{24 - x}{2\pi })^2}[/tex]
[tex]\mathbf{A_2 = \frac{(24 - x)^2}{4\pi }}[/tex]
So, the area of the complete wire is:
[tex]\mathbf{A = A_1 + A_2}[/tex]
[tex]\mathbf{A = \frac{x^2}{16} + \frac{(24 - x)^2}{4\pi }}[/tex]
Expand
[tex]\mathbf{A = \frac{x^2}{16} + \frac{576 -48x + x^2}{4\pi }}[/tex]
Differentiate
[tex]\mathbf{A' = \frac{2x}{16} + \frac{-48 + 2x}{4\pi }}[/tex]
[tex]\mathbf{A' = \frac{x}{8} + \frac{-24 + x}{2\pi }}[/tex]
Set to 0
[tex]\mathbf{\frac{x}{8} + \frac{-24 + x}{2\pi } = 0}[/tex]
Split
[tex]\mathbf{\frac{x}{8} - \frac{24}{2\pi} + \frac{x}{2\pi } = 0}[/tex]
Collect like terms
[tex]\mathbf{\frac{x}{8} + \frac{x}{2\pi } = \frac{24}{2\pi}}[/tex]
[tex]\mathbf{\frac{x}{8} + \frac{x}{2\pi } = \frac{12}{\pi}}[/tex]
Take LCM
[tex]\mathbf{\frac{x\pi + 4x}{8\pi} = \frac{12}{\pi}}[/tex]
Multiply both sides by [tex]8\pi[/tex]
[tex]\mathbf{x\pi + 4x = 96}[/tex]
Factor out x
[tex]\mathbf{x(\pi + 4) = 96}[/tex]
Solve for x
[tex]\mathbf{x = \frac{96}{\pi + 4}}[/tex]
[tex]\mathbf{x = \frac{96}{3.14 + 4}}[/tex]
[tex]\mathbf{x = \frac{96}{7.14}}[/tex]
[tex]\mathbf{x = 13.45}[/tex]
Recall that:
[tex]\mathbf{C = 24 - x}[/tex]
[tex]\mathbf{C = 24 - 13.45}[/tex]
[tex]\mathbf{C = 10.55}[/tex]
This means that:
- The length of wire used for the square is 13.45 ft
- The length of wire used for the circle is 10.55 ft
Read more about minimizing areas at:
https://brainly.com/question/13784786