A rigid tank having 25 m3 volume initially contains air having a density of 1.25 kg/m3, then more air is supplied to the tank from a high pressure stream leading to a final air density of 5.34 kg/m3 Calculate the supplied air mass in kg

Respuesta :

Answer:

[tex]\Delta m = 102.25\,kg[/tex]

Explanation:

The mass inside the rigid tank before the high pressure stream enters is:

[tex]m_{o} = \rho_{air}\cdot V_{tank}[/tex]

[tex]m_{o} = (1.25\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})[/tex]

[tex]m_{o} = 31.25\,kg[/tex]

The final mass inside the rigid tank is:

[tex]m_{f} = \rho \cdot V_{tank}[/tex]

[tex]m_{f} = (5.34\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})[/tex]

[tex]m_{f}= 133.5\,kg[/tex]

The supplied air mass is:

[tex]\Delta m = m_{f}-m_{o}[/tex]

[tex]\Delta m = 133.5\,kg-31.25\,kg[/tex]

[tex]\Delta m = 102.25\,kg[/tex]