Answer:
[tex]\Delta m = 102.25\,kg[/tex]
Explanation:
The mass inside the rigid tank before the high pressure stream enters is:
[tex]m_{o} = \rho_{air}\cdot V_{tank}[/tex]
[tex]m_{o} = (1.25\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})[/tex]
[tex]m_{o} = 31.25\,kg[/tex]
The final mass inside the rigid tank is:
[tex]m_{f} = \rho \cdot V_{tank}[/tex]
[tex]m_{f} = (5.34\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})[/tex]
[tex]m_{f}= 133.5\,kg[/tex]
The supplied air mass is:
[tex]\Delta m = m_{f}-m_{o}[/tex]
[tex]\Delta m = 133.5\,kg-31.25\,kg[/tex]
[tex]\Delta m = 102.25\,kg[/tex]