A lighthouse is located on a small island 4 km away from the nearest point P on a straight shoreline and its light makes three revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P? (Round your answer to one decimal place.) g

Respuesta :

Answer:

I have solved this problem on paper (Please see the pictures attached herewith). Thanks.

Ver imagen subhashsagar
Ver imagen subhashsagar
Ver imagen subhashsagar

The beam of light along the shoreline when it is 1 km from P is moving at 62.83 km/min.

[tex]\frac{d\theta}{dt} =3\ rev/min=3*2\pi=6\pi\ rad/min\\\\\\tan\theta=\frac{x}{3} \\\\\frac{d}{dt} tan\theta=\frac{d}{dt}( \frac{x}{3} )\\\\sec^2\theta\frac{d\theta}{dt}=\frac{1}{3} \frac{dx}{dt} \\\\\frac{dx}{dt}=3sec^2\theta\frac{d\theta}{dt}\\\\\\At\ x=1\ km;tan\theta=\frac{x}{3} =\frac{1}{3} \\\\sec^2\theta=1+tan^2\theta=1+(\frac{1}{3})^2\\\\sec^2\theta=\frac{10}{9} \\\\\\\frac{dx}{dt}=3sec^2\theta\frac{d\theta}{dt}\\\\\frac{dx}{dt}=3*\frac{10}{9} *6\pi\\\\[/tex]

[tex]\frac{dx}{dt}=62.83\ km/min[/tex]

The beam of light along the shoreline when it is 1 km from P is moving at 62.83 km/min.

Find out more at: https://brainly.com/question/21441738

Ver imagen raphealnwobi