Respuesta :

caylus
Hello,

y=3(x-2)²+4

Vertex is(2,4)
Axis of symmetry: x=2

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex

if [tex]a > 0[/tex] -----> then the parabola open upward (the vertex is a minimum)

if [tex]a < 0[/tex] -----> then the parabola open downward (the vertex is a maximum)

The axis of symmetry is equal to

[tex]x=h[/tex]

In this problem let's analyze two cases

First case

[tex]f(x)=3(x-2)^{2}+4[/tex]

the vertex is the point [tex](2,4)[/tex]

[tex]a=3[/tex]

so

[tex]3 > 0[/tex] -----> then the parabola open upward (the vertex is a minimum)

The axis of symmetry is equal to

[tex]x=2[/tex]

Second case

[tex]f(x)=3(x-2)^{2}-4[/tex]

the vertex is the point [tex](2,-4)[/tex]

[tex]a=3[/tex]

so

[tex]3 > 0[/tex] -----> then the parabola open upward (the vertex is a minimum)

The axis of symmetry is equal to

[tex]x=2[/tex]