In the emission spectrum of hydrogen the transitions observed in this experiment are in the visible region corresponding to the Balmer series in other series emmission lines are present in different regions of the eletromagnetic spectrum
Calculate the wavelenth of the n=4 to n=1 and the n=4 to n=3 transitions. Indicate in which regions of the electromagnetic spectrum these transitions would occur.

Respuesta :

Explanation:

To calculate the wavelength of light, we use Rydberg's Equation:

[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )[/tex]

Where,

[tex]\lambda [/tex]= Wavelength of radiation

[tex]R_H[/tex] = Rydberg's Constant = [tex]1.097\times 10^7m^{-1}[/tex]

[tex]n_f[/tex] = Higher energy level  

[tex]n_i[/tex] = Lower energy level

1)  The wavelength of the n=4 to n=1.

[tex]n_i=1,n_f=4[/tex]

Putting the values in above equation, we get:

[tex]\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{1^2}-\frac{1}{4^2} \right )\\\\\lambda =9.273\times 10^{-8}m=92.73 nm[/tex]

[tex]1m=10^9nm[/tex]

The region of this electromagnetic transition will be in a ultraviolet region.

2) The wavelength of the n=4 to n=1.

[tex]n_i=3,n_f=4[/tex]

Putting the values in above equation, we get:

[tex]\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{3^2}-\frac{1}{4^2} \right )\\\\\lambda =1.875\times 10^{-6}m=1875 nm[/tex]

[tex]1m=10^9nm[/tex]

The region of this electromagnetic transition will be in an infrared region.

The first electromagnetic transition will be in the  ultraviolet region and the second one is  an infrared region.

Use  Rydberg's Equation to calculate wavelength of light,

[tex]\bold {\dfrac {1}{\lambda} = R_H (\dfrac {1}{n_i^2} - \dfrac {1}{n_f^2})}[/tex]

Where,

[tex]\lambda[/tex]- Wavelength of radiation  

[tex]\bold {R_H}[/tex] = Rydberg's Constant = [tex]\bold {1.097 \times 10^7\ m^-^1}[/tex]  

[tex]\bold {n_f}[/tex] = Higher energy level    

[tex]\bold {n_i}[/tex] = Lower energy level

1)  The wavelength of the n=4 to n=1.

put the value int he equation,

[tex]\bold { {\dfrac {1}{\lambda} = \bold {1.097 \times 10^7\ m^-^1} (\dfrac {1}{1^2} - \dfrac {1}{4^2})}}\\\\\bold { \lambda = 1.097 \times 10^-^8 m }\\\\\bold { \lambda = 92.73 nm }[/tex]

This  electromagnetic transition will be in a ultraviolet region.

2) The wavelength of the n=4 to n=1.

[tex]\bold { {\dfrac {1}{\lambda} = \bold {1.097 \times 10^7\ m^-^1} (\dfrac {1}{3^2} - \dfrac {1}{4^2})}}\\\\\bold { \lambda = 1.097 \times 10^-^6 m }\\\\\bold { \lambda = 18.75 nm }[/tex]

This electromagnetic transition will be in an infrared region.

Therefore, The first electromagnetic transition will be in the  ultraviolet region and the second one is  an infrared region.

To know more about  electromagnetic transition,

https://brainly.com/question/18741491