Respuesta :
Explanation:
To calculate the wavelength of light, we use Rydberg's Equation:
[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )[/tex]
Where,
[tex]\lambda [/tex]= Wavelength of radiation
[tex]R_H[/tex] = Rydberg's Constant = [tex]1.097\times 10^7m^{-1}[/tex]
[tex]n_f[/tex] = Higher energy level
[tex]n_i[/tex] = Lower energy level
1) The wavelength of the n=4 to n=1.
[tex]n_i=1,n_f=4[/tex]
Putting the values in above equation, we get:
[tex]\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{1^2}-\frac{1}{4^2} \right )\\\\\lambda =9.273\times 10^{-8}m=92.73 nm[/tex]
[tex]1m=10^9nm[/tex]
The region of this electromagnetic transition will be in a ultraviolet region.
2) The wavelength of the n=4 to n=1.
[tex]n_i=3,n_f=4[/tex]
Putting the values in above equation, we get:
[tex]\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{3^2}-\frac{1}{4^2} \right )\\\\\lambda =1.875\times 10^{-6}m=1875 nm[/tex]
[tex]1m=10^9nm[/tex]
The region of this electromagnetic transition will be in an infrared region.
The first electromagnetic transition will be in the ultraviolet region and the second one is an infrared region.
Use Rydberg's Equation to calculate wavelength of light,
[tex]\bold {\dfrac {1}{\lambda} = R_H (\dfrac {1}{n_i^2} - \dfrac {1}{n_f^2})}[/tex]
Where,
[tex]\lambda[/tex]- Wavelength of radiation
[tex]\bold {R_H}[/tex] = Rydberg's Constant = [tex]\bold {1.097 \times 10^7\ m^-^1}[/tex]
[tex]\bold {n_f}[/tex] = Higher energy level
[tex]\bold {n_i}[/tex] = Lower energy level
1) The wavelength of the n=4 to n=1.
put the value int he equation,
[tex]\bold { {\dfrac {1}{\lambda} = \bold {1.097 \times 10^7\ m^-^1} (\dfrac {1}{1^2} - \dfrac {1}{4^2})}}\\\\\bold { \lambda = 1.097 \times 10^-^8 m }\\\\\bold { \lambda = 92.73 nm }[/tex]
This electromagnetic transition will be in a ultraviolet region.
2) The wavelength of the n=4 to n=1.
[tex]\bold { {\dfrac {1}{\lambda} = \bold {1.097 \times 10^7\ m^-^1} (\dfrac {1}{3^2} - \dfrac {1}{4^2})}}\\\\\bold { \lambda = 1.097 \times 10^-^6 m }\\\\\bold { \lambda = 18.75 nm }[/tex]
This electromagnetic transition will be in an infrared region.
Therefore, The first electromagnetic transition will be in the ultraviolet region and the second one is an infrared region.
To know more about electromagnetic transition,
https://brainly.com/question/18741491