A 295 turn solenoid has a radius of 5.25 cm and a length of 23.5 cm. (a) Find the inductance of the solenoid. mH (b) Find the energy stored in it when the current in its windings is 0.501 A.

Respuesta :

Answer:

a) [tex]L=40295.31\times 10^{-7} H=4.0295\ mH[/tex]

b) [tex]E=5.0571\ J[/tex]

Explanation:

Given:

  • no. of turns in the solenoid, [tex]N=295[/tex]
  • radius of the solenoid, [tex]r=0.0525\ m[/tex]
  • length of the solenoid, [tex]l=0.235\ m[/tex]

a)

The inductance of the solenoid is given as:

[tex]L=\frac{\mu.N^2.A}{l}[/tex]

where:

[tex]\mu=[/tex] permeability of the free space [tex]=4\pi\times 10^{-7}\ T.m.A^{-1}[/tex]

[tex]A=[/tex] cross sectional area of coil formed

[tex]L=\frac{(4\pi\times 10^{-7})\times295^2 \times(\pi\times 0.0525^2)}{0.235}[/tex]

[tex]L=40295.31\times 10^{-7} H=4.0295\ mH[/tex]

b)

current in the coil, [tex]I=0.501\ A[/tex]

The energy stored in the solenoid can be given as:

[tex]E=\frac{1}{2}\times L.I^2[/tex]

[tex]E=0.5 \times 4.0295\times 10^{-3}\times 0.501^2[/tex]

[tex]E=5.0571\ J[/tex]