he population of bacteria in a culture grows at a rate proportional to the number of bacteria present at time t. After 3 hours it is observed that 400 bacteria are present. After 10 hours 4000 bacteria are present. What was the initial number of bacteria

Respuesta :

201 Bacteria

Explanation:

P(t) = [tex]P_{0} e^{kt}[/tex]

Population after 3 hours is 400

i.e., P(3) = 400

400 = [tex]P_{0} e^{3k}[/tex]                                   .................(1)

Population after 10 hours is 2000 i.e. P(5) = 2000

2000 = [tex]P_{0} e^{10k}[/tex]                               .................(2)

From eq. (1) we get

[tex]P_{0} =400e^{-3k}[/tex]  

From eq. (2) we get

[tex]P_{0} =2000e^{-10k}[/tex]  

Compare above two equations and solve for k

[tex]400e^{-3k}=2000e^{-10k}[/tex]

[tex]e^{-3k}=5e^{-10k}[/tex]

By taking log on both sides, we get

- 3k = [tex]\ln (5e^{-10k})[/tex]

⇒ - 3k = [tex]\ln 5+\ln e^{-10k}[/tex]

⇒ - 3k = [tex]\ln 5-10k[/tex]

⇒ 7k = [tex]\ln 5[/tex]

k = [tex]\dfrac{\ln 5}{7}[/tex] = 0.2299

Put k = 0.2299 in equation (1), we get

400 = [tex]P_{0} e^{3k}[/tex]  

⇒ 400 = [tex]P_{0} e^{3(0.2299)}[/tex]  

⇒ [tex]P_{0} =\dfrac{400}{e^{3(0.2299)}}[/tex]

[tex]P_{0}[/tex]  ≈ 201 bacteria