Answer:
Explanation:
Given;
resonance frequency (F₀) = 700 kHz
resistor, R = 10 Ohm
bandwidth (BW) = 10 kHz
bandwidth (BW) [tex]= \frac{R}{2\pi L}[/tex]
[tex]BW = \frac{R}{2\pi L}[/tex]
make L (inductor) the subject of the formula
[tex]L = \frac{R}{2\pi *BW} = \frac{10}{2\pi *10,000} =1.591 *10^{-4} \ H = \ 0.1591\ mH[/tex]
[tex]F_o =\frac{1}{2\pi\sqrt{LC} } \\\\\sqrt{LC} = \frac{1}{2\pi F_o} \\\\LC = \frac{1}{4\pi ^2F_o^2}= \frac{1}{4\pi ^2(700,000)^2} = 5.168*10^{-14}[/tex]
make C (capacitor) the subject of the formula
[tex]C = \frac{5.168*10^{-14}}{1.591*10^{-4}} = 3.248*10^{-10} \ F = \ 3.248*10^{-4} \ \mu F[/tex]
quality factor (Q) [tex]= \frac{1}{R} \sqrt{\frac{L}{C}} \ = \frac{1}{10} \sqrt{\frac{1.591*10^{-4}}{3.248*10^{-10}}}=69.99[/tex]
quality factor (Q) = 69.99