in the coordinate plane the vertices of rst are r 6 -1, s 1 -4, t -5,6 prove that rst is a right triangle. state the coordinates of p such that quadrilateral rstp is a rectangle.

Respuesta :

Answer:

a) view the graph

b) p = (0,9)

Step-by-step explanation:

Data

r (6,-1); s (1-4); t (-5,6)

To prove that r, s, t form a right triangle we must find the their slopes to later verify if m1 * m2 = -1

[tex]m_{rs}=\frac{-4+1}{1-6}=\frac{-3}{-5}=\frac{3}{5}\\m_{st}=\frac{6+4}{-5-1}=\frac{10}{-6}=\frac{5}{3}\\[/tex]

we have that [tex]m_{rs}*m_{st}=\frac{3}{5}*\frac{-5}{3}=-1[/tex]

now we must find the coordinates of p such that the rstp quadrilateral form a rectangle .

p = r-s+t ⇒ (6,-1)-(1,-4)+(-5,6) = (6-1-5,-1+4+6) ⇒

p = (0,9)

Ver imagen prozehus
Ver imagen prozehus