Link AB is to be made of a steel for which the ultimate normal stress is 450 MPa. Determine the cross-sectional area for AB for which the factor of safety will be 3.50. Assume that the link will be adequately reinforced around the pins at A and B.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The cross-sectional area is [tex]A =1.6815 m^2[/tex]

Explanation:

The free body diagram of the link is shown on the second  uploaded image

From the question we are told that

       Ultimate normal stress in the link [tex]AB = 450MPa[/tex]

       Factor safety [tex]=3.59[/tex]

From our free diagram we can see that the moment about B is 0 Mathematically

                    [tex]\sum M_b =0[/tex]

       But     [tex]\sum M_b = -(20*0.4)-\frac{8(1.2)^2}{20} + D_y (0.8)[/tex]

 Hence   [tex]-(20*0.4)-\frac{8(1.2)^2}{20} + D_y (0.8) =0[/tex]

Making [tex]D_y[/tex] the  subject

                     [tex]D_y = 17.2kN[/tex]

 At equilibrium summation of all force is 0 mathematically

          This means

                                [tex]\sum F_y =0[/tex]

i.e        [tex]F_{BA} sin 35^o +D_y - 8(1.2) -20 =0[/tex]

            [tex]F_{BA} = \frac{8(1.2)+20-17.2}{sin35^o}[/tex]

             [tex]F_{BA} =21.62kN[/tex]

The factor of safety is mathematically

                      Factor of safety [tex]= \frac{\sigma _u}{\sigma _{ all}}[/tex]

Where [tex]\sigma_u[/tex] is the normal stress

           [tex]\sigma_{all}[/tex] is the allowable stress this mathematically given as

                      [tex]\sigma_{all} = \frac{F_{AB}}{A}[/tex]

                     [tex]3.5 = \frac{21.62*10^3}{A}[/tex]

       

      [tex]Factor\ of \ safety =\frac{450*10^6}{[\frac{21*10^3}{A} ]}[/tex]  

Making A the subject

                 [tex]A = \frac{3.5*21*10^3}{450*10^6}[/tex]

                     [tex]= 1.6815*10^{-4} m^2[/tex]

                           

                 

Ver imagen okpalawalter8
Ver imagen okpalawalter8