Answer:
Explanation:
Let assume that cylinder has a radius of 0.01 meters. The Gauss Law has the following form:
[tex]\frac{Q_{enc}}{\epsilon_{o}}= E\cdot A[/tex]
The electric field considering the cylinder configuration that encloses the conducting cylinder is:
[tex]E = \frac{Q_{enc}}{\epsilon_{o}\cdot (2\cdot \pi \cdot R \cdot L)}[/tex]
Where [tex]\epsilon_{o}[/tex] is the absolute permittivity.
[tex]E=\frac{0.5\,C}{\left(8.854\times 10^{-12}\,\frac{C^{2}}{N\cdot m^{2}} \right)\cdot (2\cdot \pi)\cdot (0.011\,m)\cdot (0.25\,m)}[/tex]
[tex]E = 3.268\times 10^{12}\,\frac{N}{C}[/tex]