Answer:
The average change of C will be [tex]Average\ change=\frac{C(t_{2})-C(t_{1})}{t_{2}-t_{1}}[/tex].
Step-by-step explanation:
The data provided is:
t: 1.0 | 1.5 | 2.0 | 2.5 | 3.0
C (t): 0.33 | 0.24 | 0.18 | 0.12 | 0.07
The average change of C will be compute using the formula:
[tex]Average\ change=\frac{C(t_{2})-C(t_{1})}{t_{2}-t_{1}}[/tex]
For example, let's compute the average change of C w.r.t. t over the interval [1.0, 2.0] as follows:
[tex]Average\ change=\frac{C(2.0)-C(1.0)}{2.0-1.0}=\frac{0.18-0.33}{1}=-0.15[/tex]
Consider another example, compute the average change of C w.r.t. t over the interval [1.5, 2.5] as follows:
[tex]Average\ change=\frac{C(2.5)-C(1.5)}{2.5-1.5}=\frac{0.12-0.24}{1}=-0.12[/tex]