Whenever two Apollo astronauts were on the surface of the Moon, a third astronaut orbited the Moon. Assume the orbit to be circular and 458 km above the surface of the Moon, where the acceleration due to gravity is 1.05 m/s^2. The radius of the Moon is 1.70 ✕ 10^6 m. Determine:

a. The astronaut’s orbital speed.
b. The period of the orbit.

Respuesta :

Answer:

(a) Speed v=1505.3 m/s

(b) Time Period=9001.56s

Explanation:

Radius of moon r=1.70×10⁶m

Acceleration due to gravity g=1.06m/s²

height h=458km=458000

For Part (a)The astronaut’s orbital speed.

By using the centripetal equation:

[tex]F=\frac{mv^2}{R+h}=mg\\ v^2=g(R+h)\\v=\sqrt{g(R+h)}[/tex]

Substitute the given values

So

[tex]v=\sqrt{1.05m/s^2(1.70*10^6m+458*10^3m)}\\ v=1505.3m/s[/tex]

For Part(b) The period of the orbit.

Total distance=Circumference

[tex]=2\pi (R+h)\\=2\pi (1.70*10^6m+458000m)\\=13.55*10^6m[/tex]

Speed v=1505.3m/s

Time Period=Distance/Velocity

[tex]=\frac{13.55*10^6m}{1505.3m/s}\\ =9001.56s[/tex]

Time Period=9001.56s

Explanation:

Below is an attachment containing the solution

Ver imagen nwandukelechi
Ver imagen nwandukelechi