Answer:
Question is incomplete, missing image is in attachment.
a) [tex] F_H = 28.6 KN [/tex]
b) |A| = 20.3 KN
Explanation:
let's use the equilibrium equation
[tex] EF_x = A_x + F_H CosΦ = 0 [/tex]
[tex] EF_y = A_y + F_H CosΦ =0 [/tex]
[tex] -(800Kg)(9.81m/s^2) [/tex]
[tex] EM_A = F_H sinΦ(3m) - F_H cosΦ (1.4m) [/tex]
[tex] -(200kg)(9.81m/s^2)(2m) [/tex]
[tex] -(800kg)(9.81m/s^2)(7m) =0 [/tex]
[tex] Therefore A_x = -12.8KN [/tex]
[tex] A_y = -15.8KN [/tex]
[tex] F_H = 28.6KN [/tex]
The magnitude of the force exerted on the arm by the hydraulic cylinder BC = 28.6KN
b) We now have
[tex] A_x = -12.8KN A_y = -15.8KN FH = 28.6KN [/tex]
[tex] |A| = (sqrt(-12.8KN^2)+(-15.8KN^2)) = 20.3 [/tex]
Therefore |A| = 20.3KN
Note 'E'represents summation
-