Two uniform solid cylinders, each rotating about its central (longitudinal) axis, have the same mass of 2.88 kg and rotate with the same angular speed of 257 rad/s, but they differ in radius. What is the rotational kinetic energy of (a) the smaller cylinder, of radius 0.319 m, and (b) the larger cylinder, of radius 0.605 m

Respuesta :

Answer:

(a) [tex]K_{small}=4839.3J[/tex]

(b) [tex]K_{larger}=17406.4J[/tex]

Explanation:

Given data

The angular velocity of two cylinders ω=257 rad/s

The mass of the two cylinders m=2.88 kg

The radius of small cylinder r₁=0.319 m

The radius of larger cylinder r₂=0.605 m

For Part (a)

The rotational kinetic energy of the cylinder is given by:

[tex]K=\frac{1}{2}Iw^2[/tex]

Where I is rotational of inertia of solid cylinder about its central axis.

So

[tex]K=\frac{1}{2}Iw^2\\ K=\frac{1}{2}(1/2mr^2)w^2[/tex]

Substitute the given values

So

[tex]K_{small}=\frac{1}{4}(2.88kg)(0.319)^2(257rad/s)^2 \\K_{small}=4839.3J[/tex]

For Part (b)

[tex]K=\frac{1}{2}Iw^2\\ K=\frac{1}{2}(1/2mr_{2}^2)w^2[/tex]

Substitute the given values

[tex]K_{larger}=\frac{1}{4}mr_{2}^2w^2\\ K_{larger}=\frac{1}{4}(2.88kg)(0.605m)^2(257rad/s)^2\\ K_{larger}=17406.4J[/tex]