Respuesta :
Answer:The required interval is (0.196, 0.030).
Step-by-step explanation:
Since we have given that
n = 432
x = 108
So, [tex]\hat{p}=\dfrac{x}{n}=\dfrac{108}{432}=0.25[/tex]
at 99% level of confidence, z = 2.576
So, Margin of error would be
[tex]z\times \sqrt{\dfrac{pq}{n}}\\\\=2.576\times \sqrt{\dfrac{0.25\times 0.75}{432}}\\\\=2.576\times 0.021\\\\=0.0536[/tex]
So, margin of error = 0.0536
Now, confidence interval would be
[tex]\hat{p}\pm 0.0536\\\\=(0.25-0.0536,0.25+0.0536)\\\\=(0.1964,0.3036)\\\\\approx (0.196,0.030)[/tex]
Hence, the required interval is (0.196, 0.030).
Answer:
99.5% confidence interval = [0.191 , 0.309]
Step-by-step explanation:
We are given that in a sample of 432 people aged 65 and over, 108 of them had sleep apnea.
The pivotal quantity for 99.5% confidence interval for the proportion of those aged 65 and over who have sleep apnea is given by;
P.Q. = [tex]\frac{\hat p - p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion = 108/432 = 0.25
p = population proportion
n = sample size = 432
So, 99.5% confidence interval for the population proportion, p is given by;
P(-2.813 < N(0,1) < 2.813) = 0.995 {At 0.5% level of significance z table gives
critical value of 2.813}
P(-2.813 < [tex]\frac{\hat p - p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.813) = 0.995
P(-2.813 * [tex]{\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] < [tex]{\hat p - p}[/tex] < 2.813 * [tex]{\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ) = 0.995
P([tex]\hat p[/tex] - 2.813 * [tex]{\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] < p < [tex]\hat p[/tex] + 2.813 * [tex]{\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ) = 0.995
99.5% confidence interval for p = [[tex]\hat p[/tex] - 2.813 * [tex]{\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] , [tex]\hat p[/tex] + 2.813 * [tex]{\sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex] ]
= [0.25 - 2.813 * [tex]{\sqrt{\frac{0.25(1-0.25)}{432} }[/tex] , 0.25 + 2.813 * [tex]{\sqrt{\frac{0.25(1-0.25)}{432} }[/tex] ]
= [0.191 , 0.309]
Therefore, 99.5% confidence interval for the proportion of those aged 65 and over who have sleep apnea is [0.191 , 0.309] .