Answer : The mass of [tex]NaN_3[/tex] required is, 166.4 grams.
Explanation :
First we have to calculate the moles of nitrogen gas.
Using ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = Pressure of [tex]N_2[/tex] gas = 1.00 atm
V = Volume of [tex]N_2[/tex] gas = 113 L
n = number of moles [tex]N_2[/tex] = ?
R = Gas constant = [tex]0.0821L.atm/mol.K[/tex]
T = Temperature of [tex]N_2[/tex] gas = [tex]85^oC=273+85=358K[/tex]
Putting values in above equation, we get:
[tex]1.00atm\times 113L=n\times (0.0821L.atm/mol.K)\times 358K[/tex]
[tex]n=3.84mol[/tex]
Now we have to calculate the moles of sodium azide.
The balanced chemical reaction is,
[tex]2NaN_3(s)\rightarrow 2Na(s)+3N_2(g)[/tex]
From the balanced reaction we conclude that
As, 3 mole of [tex]N_2[/tex] produced from 2 mole of [tex]NaN_3[/tex]
So, 3.84 moles of [tex]N_2[/tex] produced from [tex]\frac{2}{3}\times 3.84=2.56[/tex] moles of [tex]NaN_3[/tex]
Now we have to calculate the mass of [tex]NaN_3[/tex]
[tex]\text{ Mass of }NaN_3=\text{ Moles of }NaN_3\times \text{ Molar mass of }NaN_3[/tex]
Molar mass of [tex]NaN_3[/tex] = 65 g/mole
[tex]\text{ Mass of }NaN_3=(2.56moles)\times (65g/mole)=166.4g[/tex]
Therefore, the mass of [tex]NaN_3[/tex] required is, 166.4 grams.