The equilibrium constant, Kc , for the decomposition of COBr2 COBr2(g) ↔ CO(g) + Br2(g) is 0.190. What is Kc for the following reaction? 2CO(g) + 2Br2(g) ↔ 2COBr2(g)

Respuesta :

Answer:

[tex]2CO(g)+2Br_2(g)\rightleftharpoons 2COBr_2(g)[/tex]

27.70 is [tex]K_c'[/tex] for the reaction.

Explanation:

[tex]COBr_2(g)\rightleftharpoons CO(g) + Br_2(g)[/tex]

The equilibrium constant of the reaction = [tex]K_c=0.190[/tex]

The expression of equilibrium constant is given by :

[tex]K_c=\frac{[CO][Br_2]}{[COBr_2]}[/tex]..[1]

[tex]2CO(g)+2Br_2(g)\rightleftharpoons 2COBr_2(g)[/tex]

The equilibrium constant expression for above reaction can be written as:

[tex]K_c'=\frac{[COBr_2]^2}{[CO]^2[Br]^2}[/tex]

[tex]K_c'=\frac{1}{(K_c)^2}[/tex] ( from [1])

[tex]K_c'=\frac{1}{(0.190)^2}=27.70[/tex]

27.70 is [tex]K_c'[/tex] for the reaction.

The kc for the given reaction is 27.70.

Equilibrium constant:

Since

[tex]COBr_2(g) \rightleftharpoons CO(g) + Br_2(g)[/tex]

The equilibrium constant of the reaction should be 0.190

Now the expression for the same should be

[tex]K_c = \frac{[CO][Br_2]}{[COBr_2]} .......(1)[/tex]

[tex]2CO(g) + 2Br_2(g) \rightleftharpoons 2COBr_2(g)[/tex]

Now

The equilibrium constant expression for above reaction could be expressed

[tex]K_c' = \frac{[COBr_2]^2}{[CO]^2[Br]^2} \\\\K_c' = \frac{1}{(K_e)^2} \\\\K_c' = \frac{1}{(0.190)^2}[/tex]

= 27.70

Learn more about reaction here: https://brainly.com/question/23552723