Ascorbic acid (H2C6H6O6; H2Asc for this problem), known as vitamin C, is a diprotic acid (Ka1= 1.0x10–5 and Ka2= 5x10–12) found in citrus fruit. Calculate [HAsc–], [Asc2–], and the pH of 0.050 M H2Asc.

Respuesta :

Answer:

The concentrations are :

[tex][HAsc^-]=0.000702 M[/tex]

[tex][Asc^{2-}]=5.92\times 10^{-8} M[/tex]

The pH of the solution is 3.15.

Explanation:

[tex]H_2Asc\rightleftharpoons HAs^-+H^+[/tex]         [tex]K_{a1}=1.0\times 10^{-5}[/tex]

Initial

c                0              0

Equilibrium

c-x                x          x

[tex]K_{a1}=\frac{[HAs^-][H^+]}{[H_2Asc]}[/tex]

[tex]1.0\times 10^{-5}=\frac{x\times x}{(c-x)}[/tex]

[tex]1.0\times 10^{-5}=\frac{x^2}{(0.050-x)}[/tex]

Solving for x:

x = 0.000702 M

[tex][HAsc^-]=0.000702 M[/tex]

[tex]HAsc^-\rightleftharpoons As^{2-}+H^+[/tex]        [tex]K_{a2}=5\times 10^{-12}[/tex]

Initially

x                0          0

At equilibrium ;

(x - y)            y         y

[tex]K_{a2}=\frac{[As^{2-}][H^+]}{[HAsc^-]}[/tex]

[tex]5\times 10^{-12}=\frac{y\times y}{(x-y)}[/tex]

[tex]5\times 10^{-12}=\frac{y^2}{(x-y)}[/tex]

Putting value of x = 0.000702 M

[tex]5\times 10^{-12}=\frac{y^2}{(0.000702 -y)}[/tex]

[tex]y=5.92\times 10^{-8} M[/tex]

[tex][Asc^{2-}]=5.92\times 10^{-8} M[/tex]

Total concentration of [tex][H^+]=x+y=0.000702 M+5.92\times 10^{-8} M=7.0206\times 10^{-4} M[/tex]

The pH of the solution :

[tex]pH=-\log[H^+][/tex]

[tex]pH=-\log[7.0206\times 10^{-4} M}=3.15[/tex]