Solve 3/4≤1/2+n. Graph the solution.

The solution is [tex]n\geq\frac{1}{4}[/tex].
Solution:
Given expression:
[tex]$\frac{3}{4} \leq \frac{1}{2}+n[/tex]
To solve this inequality.
[tex]$\frac{3}{4} \leq \frac{1}{2}+n[/tex]
Subtract [tex]\frac{1}{2}[/tex] on both sides of the inequality.
[tex]$\frac{3}{4}-\frac{1}{2} \leq \frac{1}{2}+n-\frac{1}{2}[/tex]
[tex]$\frac{1}{4} \leq n[/tex]
Switch the sides.
[tex]$n\geq\frac{1}{4}[/tex]
The solution is [tex]n\geq\frac{1}{4}[/tex].
Now, graph the solution.
The solution of the graph is attached below.