Respuesta :
Answer:
v = 3.08 k ms^-1
Explanation:
As we know that, [tex]v=\sqrt{GM/r}[/tex]
where r = R + h = 35768 + 6400 = 42168 km = 4.2168 x 10^7 m
G = 6.673 x 10^-11 N m^-2 kg^-2 and M = 6.0 x 10^24 kg
By substituting the required values, we get...
v = [tex]\sqrt{}[/tex]6.673 x 10^-11 x 6.0 x 10^24 / 4.2168 x 10^7 = [tex]\sqrt{}[/tex]9.494 x 10^6 ms^-1 = 3081.2 ms^-1 = 3.08 k ms^-1
Answer:
2716.84 m/s
Explanation:
Using,
F = mv²/r................. Equation 1
Where F = The force keeping the satellite in the orbit, m = mass of the satellite, v = velocity of the satellite, r = radius of the circular orbit.
make v the subject of equation 1
v = √(Fr/m).................. Equation 2
Given: F = 44.1 N, r = 35768 km = 35768000 m, m = 213.7 kg.
Substitute into equation 2
v = √(44.1×35768000/213.7)
v = √(7381229.761)
v = 2716.84 m/s
Hence the velocity of the satellite = 2716.84 m/s