Answer:
The maximum voltage is 39.08 V.
Explanation:
Given that,
Voltage = 550 V
Suppose, In an L-R-C series circuit, the resistance is 400 ohms, the inductance is 0.380 Henry, and the capacitance is [tex]1.20\times10^{-2}\mu F[/tex]
We need to calculate the resonant frequency
Using formula of resonant frequency
[tex]f=\dfrac{1}{2\pi\sqrt{LC}}[/tex]
Put the value into the formula
[tex]f=\dfrac{1}{2\pi\sqrt{0.380\times1.20\times10^{-8}}}[/tex]
[tex]f=2356.8\ Hz[/tex]
We need to calculate the maximum current
Using formula of current
[tex]I=\dfrac{V_{c}}{X_{c}}[/tex]
[tex]I=2\pi f C\times V_{c}[/tex]
Put the value into the formula
[tex]I=2\pi\times2356.8\times1.20\times10^{-8}\times550[/tex]
[tex]I=0.0977\ A[/tex]
We need to calculate the impedance of the circuit
Using formula of impedance
[tex]Z=\sqrt{R^2+(X_{L}-X_{C})^2}[/tex]
At resonant frequency , [tex]X_{L}=X_{C}[/tex]
So, Z = R
We need to calculate the maximum voltage
Using formula of voltage
[tex]V=IR[/tex]
Put the value into the formula
[tex]V=0.0977\times400[/tex]
[tex]V=39.08\ V[/tex]
Hence, The maximum voltage is 39.08 V.