contestada

⦁ A gas-turbine power plant operating on an ideal Brayton cycle has a pressure ratio of 8. The gas temperature is 300 K at the compressor inlet and 1400 K at the turbine inlet. Utilizing the air-standard assumptions, determine (a) the gas temperature at the exits of the compressor and the turbine, (b) the back work ratio, and (c) the thermal efficiency.

Respuesta :

Answer:

The value of temperature at compressor outlet = 543.43 K

The temperature at turbine outlet = 773.04 K

Back work ratio = 0.388

The value of efficiency of the Ideal Brayton cycle =0.448

Explanation:

Pressure ratio ([tex]r_{p}[/tex])= 8 And specific heat ratio ([tex]\gamma[/tex]) = 1.4

Compressor inlet temperature ([tex]T_{1}[/tex]) = 300 K

Turbine inlet temperature ([tex]T_{3}[/tex]) = 1400 K

(a). Temperature ratio inside the compressor is given by

                  [tex]\frac{T_{2} }{T_{1} }[/tex] = [tex]r_{p}\frac{\gamma - 1}{\gamma}[/tex]

Where [tex]T_{1}[/tex] & [tex]T_{2}[/tex] represents the compressor inlet and outlet temperature.

Put all the values in the given formula  we get

⇒ [tex]\frac{T_{2} }{300}[/tex] = [tex]8^{\frac{1.4 - 1}{1.4} }[/tex]

⇒ [tex]\frac{T_{2} }{300}[/tex] = 1.811

[tex]T_{2}[/tex] = 543.43 K

This is the value of temperature at compressor outlet.

The temperature ratio inside the turbine is given by

       [tex]\frac{T_{3} }{T_{4} }[/tex] = [tex]r_{p}\frac{\gamma - 1}{\gamma}[/tex]

Where [tex]T_{3}[/tex] & [tex]T_{4}[/tex] represents the turbine inlet & outlet temperatures.

Put all the values in the given formula we get

⇒ [tex]\frac{1400}{T_{4} }[/tex] = [tex]8^{\frac{1.4 - 1}{1.4} }[/tex]

[tex]T_{4}[/tex] = 773.05 K

This is the temperature at turbine outlet.

(b). The work done by the turbine is given by the formula ([tex]W_{T}[/tex]) = [tex]C_{p}[/tex] ([tex]T_{3}[/tex] - [tex]T_{4}[/tex] )

Put all the values in the above formula we get [tex]W_{T}[/tex] = 1.005 × (1400 - 773.05)

                                                                            [tex]W_{T}[/tex] = 630.08 [tex]\frac{KJ}{Kg}[/tex]

And work done inside the pump is given by [tex]W_{c}[/tex] = [tex]C_{p}[/tex] ([tex]T_{2}[/tex] - [tex]T_{1}[/tex])

Put all the values in the above formula we get [tex]W_{c}[/tex] = 1.005 × (543.43 - 300)

                                                                            [tex]W_{c}[/tex] = 244.65 [tex]\frac{KJ}{Kg}[/tex]

Back work ratio is given by [tex]r_{b}[/tex] = [tex]\frac{W_{C} }{W_{}T}[/tex]

Put the values of [tex]W_{c}[/tex] & [tex]W_{T}[/tex] in above formula we get

⇒ [tex]r_{b}[/tex] = [tex]\frac{244.65}{630.08}[/tex]

⇒ [tex]r_{b}[/tex] = 0.388

This is the value of back work ratio.

(C). Thermal Efficiency is given by  E = 1 - [tex]\frac{1}{r_{p} ^{\frac{\gamma - 1}{\gamma} } }[/tex]

⇒ E = 1 - [tex]\frac{1}{8 ^{\frac{1.4 - 1}{1.4} } }[/tex]

⇒ E = 0.448

This is the value of efficiency of the Ideal Brayton cycle.