Answer:
16.52 J/g°C is the specific heat of the copper.
Explanation:
Mass of water = m
Volume of water = V = 200.0 mL
Density of water = d = 1.0 g/mL
[tex]m=d\times V=1.0 g/mL\times 200.0 mL=200.0 g[/tex]
Specific heat of water = c = 4.184 J/g°C
Initial temperature of the water =[tex]T_1[/tex] = 25.0°C
Final temperature of the water =[tex]T_2[/tex] = 67.0°C
Heat absorbed by water = Q
[tex]Q=mc\Delta T=mc\times (T_2-T_1)[/tex]
[tex]Q=200.0 g\times 4.184 J\g ^oC(67.0^oC-25.0^oC)[/tex]
[tex]Q=35,145.6 J[/tex]
Mass of copper pan = M = 16.0 g
Specific heat of copper = c' = ?
Initial temperature of the copper pan=[tex]T_3[/tex] = 200.0 °C
Final temperature of the copper pan=[tex]T_4[/tex] = 67.0°C
Heat lost by copper pan = Q'
[tex]Q'=Mc'\times (T_4-T_3)[/tex]
Q= -Q' ( law of conservation of energy)
[tex]-Q=16.0 g\times c'\times (67.0^oC-200.0^oC)[/tex]
[tex]-35,145.6 J=16.0 g\times c'\times (67.0^oC-200.0^oC)[/tex]
[tex]c'=\frac{-35,145.6 J}{16.0 g\times (67.0^oC-200.0^oC}[/tex]
[tex]c'=16.52 J/g^oC[/tex]
16.52 J/g°C is the specific heat of the copper.