Respuesta :

Answer:

16.52 J/g°C is the specific heat of the copper.

Explanation:

Mass of water = m

Volume of water = V = 200.0 mL

Density of water = d = 1.0 g/mL

[tex]m=d\times V=1.0 g/mL\times 200.0 mL=200.0 g[/tex]

Specific heat of water = c = 4.184 J/g°C

Initial temperature of the water =[tex]T_1[/tex] = 25.0°C

Final temperature of the water =[tex]T_2[/tex] = 67.0°C

Heat absorbed by water = Q

[tex]Q=mc\Delta T=mc\times (T_2-T_1)[/tex]

[tex]Q=200.0 g\times 4.184 J\g ^oC(67.0^oC-25.0^oC)[/tex]

[tex]Q=35,145.6 J[/tex]

Mass of copper pan  = M = 16.0 g

Specific heat of copper = c' = ?

Initial temperature of the copper pan=[tex]T_3[/tex] = 200.0 °C

Final temperature of the copper pan=[tex]T_4[/tex] = 67.0°C

Heat lost by copper pan  = Q'

[tex]Q'=Mc'\times (T_4-T_3)[/tex]

Q= -Q' ( law of conservation of energy)

[tex]-Q=16.0 g\times c'\times (67.0^oC-200.0^oC)[/tex]

[tex]-35,145.6 J=16.0 g\times c'\times (67.0^oC-200.0^oC)[/tex]

[tex]c'=\frac{-35,145.6 J}{16.0 g\times (67.0^oC-200.0^oC}[/tex]

[tex]c'=16.52 J/g^oC[/tex]

16.52 J/g°C is the specific heat of the copper.