Assuming 95.0% efficiency for the conversion of electrical power by the motor, what current must the 12.0-V batteries of a 708-kg electric car be able to supply to do the following?

(a) accelerate from rest to 25.0 m/s in 1.00 min
1 (answer in Amps)

(b) climb a 200-m high hill in 2.00 min at a constant 25.0 m/s speed while exerting 423 N of force to overcome air resistance and friction

Respuesta :

Answer:

a) [tex]I=646.9298\ A[/tex]

b) [tex]I=1942.018\ A[/tex]

Explanation:

Given:

  • efficiency of the motor, [tex]\eta=0.95[/tex]
  • voltage of the battery, [tex]V=12\ V[/tex]
  • mass of the car, [tex]m=708\ kg[/tex]

a)

initial velocity, [tex]u=0\ m.s^{-1}[/tex]

final velocity, [tex]v=25\ m.s^{-1}[/tex]

time taken for the acceleration, [tex]t=1\ min=60\ s[/tex]

Now we know by the Newton's second law of motion:

[tex]F=m.a[/tex]

[tex]F=708\times \frac{(25-0)}{60}[/tex]

[tex]F=295\ N[/tex]

Now the power will be :

[tex]P=F.v[/tex]

[tex]P=295\times 25[/tex]

[tex]P=7375\ W[/tex]

According to the question:

0.95 times of the electrical power should yield this mechanical power.

[tex]P=V.I\times 0.95[/tex]

[tex]7375=12\times I\times 0.95[/tex]

[tex]I=\frac{7375}{12\times 0.95}[/tex]

[tex]I=646.9298\ A[/tex]

b)

height climbed by the car, [tex]h=200\ m[/tex]

velocity of climb, [tex]v=25\ m.s^{-1}[/tex]

time taken to climb the height, [tex]t=2\ min=120\ s[/tex]

force exerted to overcome air and frictional resistances, [tex]f=423\ N[/tex]

Now the Power required to climb the hill:

[tex]P=\frac{m.g.h}{t} +f\times v[/tex]

[tex]P=\frac{708\times 9.8\times 200}{120}+423\times 25[/tex]

[tex]P=22139\ W[/tex]

Now according to the electrical efficiency:

[tex]P=V.I\times 0.95[/tex]

[tex]22139=12\times I\times 0.95[/tex]

[tex]I=1942.018\ A[/tex]

Answer:

(a). The current is 323.4 A.

(b). The current is 1942 A.

Explanation:

Given that,

Efficiency = 95.0 %

Voltage = 12.0 V

Mass of electric car= 708 Kg

Height = 200 m

We need to calculate the change in kinetic energy

Using formula of kinetic energy

[tex]\Delta K=K_{f}-K_{i}[/tex]

Put the value into the formula

[tex]\Delta K=\dfrac{1}{2}mv^2-0[/tex]

[tex]\Delta K=\dfrac{1}{2}\times708\times(25)^2-0[/tex]

[tex]\Delta K=221250\ J[/tex]

We need to calculate the output power

Using formula of power

[tex]P_{o}=\dfrac{\Delta K}{t}[/tex]

[tex]P_{o}=\dfrac{221250}{60}[/tex]

[tex]P_{o}=3687.5\ W[/tex]

We need to calculate the current

Using formula of electric power

[tex]P_{in}=iV[/tex]

[tex]P_{o}=0.95P_{in}[/tex]

[tex]P_{0}=0.95\times iV[/tex]

Put the value into the formula

[tex]3687.5=0.95\times i\times12.0[/tex]

[tex]i=\dfrac{3687.5}{0.95\times12.0}[/tex]

[tex]i=323.4\ A[/tex]

The current is 323.4 A.

(b). We need to calculate the distance

[tex]d=vt[/tex]

Put the value into the formula

[tex]d=25\times2\times60[/tex]

[tex]d=3000\ m[/tex]

We need to calculate the force

Using formula of force

[tex]F=mg\sin\theta[/tex]

Put the value into the formula

[tex]F=708\times9.8\times\dfrac{200}{3000}[/tex]

[tex]F=462.56\ N[/tex]

We need to calculate the power

Using formula of power

[tex]P=F\times v[/tex]

Put the value into the formula

[tex]P=(462.56+423)\times25[/tex]

[tex]P=22139\ W[/tex]

We need to calculate the current

Using formula of current

[tex]I=\dfrac{P}{V}[/tex]

Put the value into the formula

[tex]I=\dfrac{22139\times100}{95\times12}[/tex]

[tex]I=1942.0\ A[/tex]

The current is 1942 A.

Hence, (a). The current is 323.4 A.

(b). The current is 1942 A.