A large tower is to be supported by a series of steel wires. It is estimated that the load on each wire will be 11,100 N. Determine the minimum required wire diameter assuming a factor of safety of 2 and a yield strength of 1030 MPa.

Respuesta :

Explanation:

The given data is as follows.

       Load on each wire = 11,100 N

       Factor of safety (N) = 2

       [tex]\sigma_{yield}[/tex] = 1030 MPa  (150,000 Psi)

Now,

          [tex]\sigma_{working} = \frac{\sigma_{yield}}{2}[/tex]

                        = [tex]\frac{1030 MPa}{2}[/tex]

                        = 515 MPa  (75,000 Psi)

So, we will calculate the diameter as follows.

                 [tex]\sigma_{w} = \frac{F}{A_{o}}[/tex]

or,             [tex]A_{o} = \frac{F}{\sigma_{w}}[/tex]

              [tex]\frac{\pi}{4} \times d^{2} = \frac{11,100}{515} \times 10^{6} N/m^{2}}[/tex]

                  [tex]d^{2}[/tex] = 27.45

                         d = 5.24 mm

Thus, we can conclude that the minimum required wire diameter is 5.24 mm.