Answer:
v₁f = -5.7 cm/s
Explanation:
[tex]m_{1} * v_{10} = m_{1} *v_{1f} + m_{2} * v_{2f} (1)[/tex]
[tex]m_{1} * (v_{10} - *v_{1f} ) = m_{2} * v_{2f} (2)[/tex]
[tex]\Delta K = 0 \\ \\ \frac{1}{2} * m_{1} *v_{10} ^{2} = \frac{1}{2}* m_{1} *v_{1f} ^{2} + \frac{1}{2}* m_{2} *v_{2f} ^{2} (3)[/tex]
[tex]m_{1}* (v_{10} ^{2} -v_{1f} ^{2} ) = m_{2} *v_{2f} ^{2} (4)[/tex]
[tex]v_{10} + v_{1f} = v_{2f}[/tex]
[tex]m_{1} * v_{10} = m_{1} * v_{1f} +2*m_{1} * (v_{10} + v_{1f})\\ \\ -(m_{1} * v_{10}) = 3* m_{1} *v_{1f} \\ \\ v_{1f} = - \frac{v_{10} }{3} = \frac{-17.1cm/s}{3} = -5.7 cm/s[/tex]