Answer:
[tex]\frac{N_{v}}{N}=1.92*10^{-4}[/tex]
Explanation:
First of all we need to find the amount of atoms per volume (m³). We can do this using the density and the molar mass.
[tex]7.40 \frac{g}{cm^{3}}*\frac{1mol}{85.5 g}*\frac{6.023*10^{23}atoms}{1mol}*\frac{1000000 cm^{3}}{1m^{3}}=5.21*10^{28}\frac{atoms}{m^{3}}[/tex]
Now, the fraction of vacancies is equal to the N(v)/N ratio.
Therefore:
The fraction of vacancies at 600 °C will be:
[tex]\frac{N_{v}}{N}=\frac{1*10^{25}}{5.21*10^{28}}[/tex]
[tex]\frac{N_{v}}{N}=1.92*10^{-4}[/tex]
I hope it helps you!