Answer:
[tex]h_{B} = 6.083\,m[/tex]
Explanation:
Let assume that pole vaulter begins running at a height of zero. The pole vaulter is modelled after the Principle of Energy Conservation:
[tex]K_{A} = K_{B} + U_{g,B}[/tex]
[tex]\frac{1}{2}\cdot m \cdot v_{A}^{2} = \frac{1}{2}\cdot m \cdot v_{B}^{2} + m\cdot g \cdot h_{B}[/tex]
The expression is simplified and final height is cleared within the equation:
[tex]\frac{1}{2}\cdot (v_{A}^{2} - v_{B}^{2}) = g\cdot h_{B}[/tex]
[tex]h_{B} = \frac{(v_{A}^{2}-v_{B}^{2})}{2\cdot g}[/tex]
[tex]h_{B} = \frac{[(11\,\frac{m}{s} )^{2}-(1.3\,\frac{m}{s} )^{2}]}{2\cdot (9.807\,\frac{m}{s^{2}} )}[/tex]
[tex]h_{B} = 6.083\,m[/tex]