Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

If the parent function is [tex]y=f(x)[/tex], then

  • the graph of the function [tex]y=f(x-a)[/tex] is translated a units to the right graph of the function [tex]y=f(x);[/tex]
  • the graph of the function [tex]y=f(x+a)[/tex] is translated a units to the left graph of the function [tex]y=f(x);[/tex]
  • the graph of the function [tex]y=f(x)+a[/tex] is translated a units up graph of the function [tex]y=f(x);[/tex]
  • the graph of the function [tex]y=f(x)-a[/tex] is translated a units down graph of the function [tex]y=f(x).[/tex]

Q1. The graph of the function [tex]g(x)=x^2+5[/tex] is translated 5 units up graph of the function [tex]f(x)=x^2.[/tex]

Q2. The graph of the function [tex]h(x)=x^2+10[/tex] is translated 10 units up graph of the function [tex]f(x)=x^2.[/tex]

Q3. The graph of the function [tex]j(x)=x^2-5[/tex] is translated 5 units down graph of the function [tex]f(x)=x^2.[/tex]

Q4. The graph of the function [tex]g(x)=-2x^2+4[/tex] is reflected across the x-axis, stretched by a factor of 2 and translated 4 units up graph of the function [tex]f(x)=x^2.[/tex]

Q5. The graph of the function [tex]h(x)=-\dfrac{1}{4}x^2-1[/tex] is reflected across the x-axis, stretched by a factor of [tex]\frac{1}{4}[/tex] and translated 1 unit down graph of the function [tex]f(x)=x^2.[/tex]

Q6. The graph of the function [tex]k(x)=\dfrac{1}{3}x^2+5[/tex] is stretched by a factor of [tex]\dfrac{1}{3}[/tex] and translated 5 units up graph of the function [tex]f(x)=x^2.[/tex]