Answer:
The y-intercept is C=7 and the slope is D=-3
Step-by-step explanation:
Let [tex]L(t)=C+Dt[/tex] be the best linear fit.
This is the best straight line that passes through [tex](t_1,b_1)=(-2,12)\\(t_2,b_2)=(0,9)\\(t_3,b_3)=(2,0)\\(t_4,b_4)=(4,-5)[/tex]
The resulting linear system is
[tex]C-2D=12\\C+0D=9\\C+2D=0\\C+4D=-5[/tex]
The corresponding matrices form [tex]Ax=b[/tex], has [tex]A=\left[\begin{array}{cc}1&-2\\1&0\\1&2\\1&4\end{array}\right][/tex] and [tex]b=\left[\begin{array}{c}1&\\9&\\0&\\-5\end{array}\right][/tex]
The components of the normal equations are:
[tex]A^TA=\left[\begin{array}{cccc}1&1&1&1\\-2&0&2&4\end{array}\right] \left[\begin{array}{cc}1&-2\\1&0\\1&2\\1&4\end{array}\right]=\left[\begin{array}{cc}4&4\\4&24\end{array}\right][/tex]
and
[tex]A^Tb=\left[\begin{array}{cccc}1&1&1&1\\-2&0&2&4\end{array}\right] \left[\begin{array}{c}12\\9\\0\\-5\end{array}\right]=\left[\begin{array}{c}16\\4\end{array}\right][/tex]
We now obtain, the normal equations:
[tex]\left[\begin{array}{cc}4&4\\4&24\end{array}\right]\left[\begin{array}{c}C\\D\end{array}\right] =\left[\begin{array}{c}16\\-44\end{array}\right][/tex]
We use row operation to obtain
[tex]\left[\begin{array}{cc}1&0\\0&1\end{array}\right]\left[\begin{array}{c}C\\D\end{array}\right] =\left[\begin{array}{c}7\\-3\end{array}\right][/tex]
This implies C=7, and D=-3
Therefore the best fit line is [tex]L(t)=7-3t[/tex]