Respuesta :
Answer:
Step-by-step explanation:
chect attachment for step by step details. attachment 2 is the (b) part of the question.


Answer:
Hence,The largest area is [tex]10562.5ft^2[/tex].
Step-by-step explanation:
Given information:
Total fence=650[tex]ft[/tex]
From figure,
Expression for the total area A in terms of both x and y
[tex]2x+5y=650[/tex]
[tex]y=\frac{650-2x}{5}[/tex]
Area of rectangle= length[tex]\times[/tex]breadth
Area of rectangle=[tex]x\times y[/tex]
[tex]A=xy=x(\frac{650-2x}{5})[/tex]
The total area as a function of one variable
[tex]A=\frac{650}{5}x-\frac{2x^2}{5}[/tex]
For maximum area
[tex]\frac{dA}{dx}=0[/tex]
[tex]\frac{650}{4}-\frac{4x}{5}=0\\\\x=162.5[/tex]
On substitution
[tex]y=\frac{650-2x}{5}=\frac{650-2\times162.5}{5}=65[/tex]
Area=[tex]xy=162.5ft\times65ft=10562.5ft^2[/tex]
Hence,The largest area is [tex]10562.5ft^2[/tex].
For more details please refer link:
https://brainly.com/question/11906003?referrer=searchResults
