50.0 mL solution of 0.160 M potassium alaninate ( H 2 NC 2 H 5 CO 2 K ) is titrated with 0.160 M HCl . The p K a values for the amino acid alanine are 2.344 ( p K a1 ) and 9.868 ( p K a2 ) , which correspond to the carboxylic acid and amino groups, respectively.a) how do you calculate the PH of the first equivalent and b) the second equivalent? please help

Respuesta :

Answer:

a) 6.12

b) 1.87

Explanation:

At the onset of the equivalence point (i.e the first equivalence point); alaninate is being converted to alanine.

[tex]H_2NC_2H_5CO^-_2[/tex]  [tex]+[/tex]  [tex]H^+[/tex]  ------>  [tex]H_3}^+NC_2H_5CO^-_2[/tex]

1 mole of  alaninate react with 1 mole of acid to give 1 mole of alanine;

therefore 50.0 mL  of 0.160 M alaninate required 50.0 mL of 0.160M HCl to reach the first equivalence point.

The concentration of alanine can be gotten via  the following process as shown below;

[tex][H_3}^+NC_2H_5CO^-_2][/tex] = [tex]\frac{initial moles of alaninate}{total volume}[/tex]

[tex][H_3}^+NC_2H_5CO^-_2][/tex] = [tex]\frac{(50.0mL)*(0.160M)}{(50.0mL+50.0mL)}[/tex]

[tex][H_3}^+NC_2H_5CO^-_2][/tex] = [tex]\frac{8}{100mL}[/tex]

[tex][H_3}^+NC_2H_5CO^-_2][/tex] = 0.08 M

Alanine serves as an intermediary form, however the concentration of [tex]H^+[/tex] and the pH can be determined as follows;

[tex][H^+][/tex] = [tex]\sqrt{\frac{K_{a1}K_{a2}{[H_3}^+NC_2H_5CO^-_2]+K_{a1}K_w}{ K_{a1}{[H_3}^+NC_2H_5CO^-_2] } }[/tex]

[tex][H^+][/tex] = [tex]\sqrt{\frac{ (10^{-pK_{a1})}(10^{-pK_{a2})}(0.08)+(10^{-pK_{a1})}(1.0*10^{-14})} {(10^{-pK_{a1}})+(0.08)} }[/tex]

[tex][H^+][/tex] = [tex]\sqrt{\frac{ (10^{-2.344})(10^{-9.868})(0.08)+(10^{-2.344})(1.0*10^{-14})} {(10^{-2.344})+(0.08)} }[/tex]

[tex][H^+][/tex] =  [tex]7.63*10^{-7}M[/tex]

pH = - log [tex][H^+][/tex]

pH = [tex]-log[7.63*10^{-7}][/tex]

pH= 6.12

Therefore, the pH of the first equivalent point = 6.12

b) At the second equivalence point; all alaninate is converted into protonated alanine.

[tex]H_2NC_2H_5CO^-_2[/tex]    [tex]+[/tex]  [tex]H^+[/tex]     ----->   [tex]H^+_3NC_2H_5CO^-_2[/tex]

[tex]H^+_3NC_2H_5CO^-_2[/tex]    [tex]+[/tex]  [tex]H^+[/tex]     ----->   [tex]H^+_3NC_2H_5CO_2H[/tex]

Here; we have a situation where 1 mole of alaninate react with 2 moles of acid to give 1 mole of protonated alanine;

Moreover, 50.0 mL of 0.160 M alaninate is needed to produce 100.0mL of 0.160 M HCl in order to achieve the second equivalence point.

Thus, the concentration of protonated alanine can be determined as:

[tex][H^+_3NC_2H_5CO_2H][/tex] = [tex]\frac{initial moles of alaninate}{total volume}[/tex]

[tex][H^+_3NC_2H_5CO_2H][/tex] = [tex]\frac{(50.0mL)*(0.160M)}{(50.0mL+100.0mL)}[/tex]

[tex][H^+_3NC_2H_5CO_2H][/tex] = [tex]\frac{8}{150}[/tex]

[tex][H^+_3NC_2H_5CO_2H][/tex] = 0.053 M

The pH at the second equivalence point can be calculated via the dissociation of protonated alanine at equilibrium which is represented as:

[tex]H^+_3NC_2H_5CO_2H[/tex]        ⇄        [tex]H^+_3NC_2H_5CO^-_2[/tex]    [tex]+[/tex]  [tex]H^+[/tex]

(0.053 - x)                                  x                             x

[tex]K_{a1}[/tex] = [tex]\frac{[H^+] [H^+_3NC_2H_5CO^-_2]}{[H^+_3NC_2H_5CO_2H]}[/tex]

[tex]10^{-PK_{a1}}[/tex] = [tex]\frac{x*x}{(0.053-x)}[/tex]

[tex]10^{-2.344} =\frac{x^2}{(0.053-x)}[/tex]

[tex]0.00453 = \frac{x^2}{(0.053-x)}[/tex]

[tex]0.00453(0.053-x) =x^2[/tex]

[tex]x^2+0.00453x-(2.4009*10^{-4})[/tex]

Using quadratic equation formula;

[tex]\frac{-b+/-\sqrt{b^2-4ac} }{2a}[/tex]

we have:

[tex]\frac{-0.00453+\sqrt{(0.00453)^2-4(1)(-2.4009*10^{-4})} }{2(1)}[/tex] OR [tex]\frac{-0.00453-\sqrt{(0.00453)^2-4(1)(-2.4009*10^{-4})} }{2(1)}[/tex]

= 0.0134                    OR                -0.0179

So; we go by the positive integer which says

x = 0.0134

So [tex][H^+]=[H_3^+NC_2H_5CO^-_2]= 0.0134 M[/tex]

pH = [tex]-log[H^+][/tex]

pH = [tex]-log[0.0134][/tex]

pH = 1.87

Thus, the pH of the second equivalent point = 1.87