Answer:
Explanation:
The steam enters the condenser as a vapor-liquid mix and exits as a saturated liquid. Specific enthalpies at inlet and outlet are given from a property table for saturated water:
Inlet
[tex]h_{in} = h_{f} + x\cdot (h_{fg})[/tex]
[tex]h_{in} = 251.42\,\frac{kJ}{kg} + 0.95\cdot (2357.5\,\frac{kJ}{kg} )[/tex]
[tex]h_{in} = 2373.17\,\frac{kJ}{kg}[/tex]
Outlet
[tex]h_{out} = h_{f}[/tex]
[tex]h_{out} = 251.42\,\frac{kJ}{kg}[/tex]
The heat transfer rate to the river is:
[tex]\dot Q_{out} = \dot m_{steam}\cdot (h_{in} - h_{out})[/tex]
[tex]\dot Q_{out} = (20000\,\frac{kg}{s} )\cdot (2373.17\,\frac{kJ}{kg}-251.42\,\frac{kJ}{kg} )[/tex]
[tex]\dot Q_{out} = 42.435\times 10^{6}\,W[/tex]
The mass flow rate of the cooling water is:
[tex]\dot m_{cooling} = \frac{\dot Q_{out}}{c_{p,w}\cdot \Delta T_{max}}[/tex]
[tex]\dot m_{cooling} = \frac{42.435\times 10^{6}\,W}{(4186\,\frac{J}{kg\cdot K} )\cdot (10\,K)}[/tex]
[tex]\cdot m_{cooling} = 1013.736\,\frac{kg}{s}[/tex]