Answer:
(1)[tex]V_x[/tex] = λ[tex]g_x[/tex] (2) [tex]V_y[/tex] = λ[tex]g_y[/tex] (3) [tex]V_z[/tex] = λ[tex]g_z[/tex]
yz = λ (2z + y) xz = λ (2z + x) xy = λ (2x + 2y)
From (1) and (2) => (λx)(2z) + λxy = (λy)(2z) + xyλ
=> x = y
x² = λ(4x)
x = 4λ which is also = y ; 4λz = λ(2z + 4λ)
=> 2z = 4λ ∴ z = 2λ
zxy + 2yz + xy = 48
=> λ = 1 => x = 4 = y & z = 2
[tex]V_{max}[/tex] = (4)(4)(2) = 32
at (x,y,z) = (4,4,2)
Step-by-step explanation: