A rod has a radius of 10 mm is subjected to an axial load of 15 N such that the axial strain in the rod is ????௫ = 2.75*10-6, determine the modulus of elasticity E and the change in the rod’s diameter. Let Poisson’s ratio ν = 0.23.

Respuesta :

Answer:

Knowing we only have one load applied in just one direction we have to use the Hooke's law for one dimension

ex = бx/E

бx = Fx/A = Fx/π[tex]r^{2}[/tex]

Using both equation and solving for the modulus of elasticity E

E = бx/ex = Fx / π[tex]r^{2}[/tex]ex

E = [tex]\frac{15}{pi (10 * 10^{-3})^{2} * 2.75 * 10^{-6} } = 17.368 * 10^{9} Pa = 17.4 GPa[/tex]

Apply the Hooke's law for either y or z direction (circle will change in every direction) we can find the change in radius

ey = [tex]\frac{1}{E}[/tex] (бy - v (бx + бz)) = [tex]-\frac{v}{E}[/tex]бx

= [tex]\frac{vFx}{Epir^{2} }[/tex] = [tex]\frac{0.23 * 15}{pi (10 * 10^{-3)^{2} } * 17.362 * 10^{9} } = -0.63 *10^{-6}[/tex]

Finally

ey = Δr / r

Δr = ey * r = 10 * [tex]-0.63* 10^{-6} mm = -6.3 * 10^{-6} mm[/tex]

Δd = 2Δr = [tex]-12.6 * 10^{-6} mm[/tex]

Explanation: