Respuesta :
[tex]x= \frac{3 \pm \sqrt{ (-3)^{2} -4 \times -2 \times 20} }{2 \times -2} \\ =\frac{3 \pm \sqrt{ 9 + 160} }{-4} \\ =\frac{3 \pm \sqrt{ 169} }{-4} \\ = \frac{3+13}{-4} \ or \ \frac{3-13}{-4} \\ =-4 \ or \ 2.5[/tex]
x-intercepts is (-4, 0) and (5/2, 0)
x-intercepts is (-4, 0) and (5/2, 0)
Answer:
the x-intercepts are
[tex](-4,0)[/tex] and [tex](5/2,0)[/tex]
Step-by-step explanation:
we know that
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]f(x)=-2x^{2} -3x+20[/tex]
Equate the quadratic equation to zero to find the x-intercepts
[tex]-2x^{2} -3x+20=0[/tex]
so
[tex]a=-2\\b=-3\\c=20[/tex]
substitute in the formula
[tex]x=\frac{3(+/-)\sqrt{(-3)^{2}-4(-2)(20)}} {2(-2)}[/tex]
[tex]x=\frac{3(+/-)\sqrt{9+160}} {-4}[/tex]
[tex]x=\frac{3(+/-)13} {-4}[/tex]
[tex]x=\frac{3+13} {-4}=-4[/tex]
[tex]x=\frac{3-13} {-4}=5/2[/tex]
therefore
the x-intercepts are
[tex](-4,0)[/tex] and [tex](5/2,0)[/tex]