How do you find Jn on this triangle?

JN = 30.4
Solution:
Given data:
KM = 20, MJ = 16, LN = 38, JN = ?
Side splitter theorem:
If a line is parallel to one side of a triangle and the line intersects the other two sides, then this line divides those two sides proportionally.
[tex]$\Rightarrow\frac{MJ}{KM} =\frac{JN}{LN}[/tex]
[tex]$\Rightarrow\frac{16}{20} =\frac{JN}{38}[/tex]
Do cross multiplication, we get
⇒ 16 × 38 = 20 × JN
Divide by 20 on both sides, we get
[tex]$\Rightarrow \frac{152}{5} =JN[/tex]
⇒ 30.4 = JN
Switch the sides.
⇒ JN = 30.4
The length of JN is 30.4.