Respuesta :

Answer:

The roots are

[tex]x=\frac{1}{6} [3+ i\sqrt{3}][/tex]

[tex]x=\frac{1}{6} [3- i\sqrt{3}][/tex]

Step-by-step explanation:

we have

[tex]3x^2-3x+1[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]3x^2-3x+1=0[/tex]  

so

[tex]a=3\\b=-3\\c=1[/tex]

substitute in the formula

[tex]x=\frac{-(-3)\pm\sqrt{-3^{2}-4(3)(1)}} {2(3)}[/tex]

[tex]x=\frac{3\pm\sqrt{-3}} {6}[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

so

[tex]x=\frac{1}{6} [3\pm i\sqrt{3}][/tex]

The roots are

[tex]x=\frac{1}{6} [3+ i\sqrt{3}][/tex]

[tex]x=\frac{1}{6} [3- i\sqrt{3}][/tex]