Answer: Options A and B.
Step-by-step explanation:
Given the following polynomial:
[tex]-2y-8+4y[/tex]
You need to remember the following:
1. The Distributive property. This states that:
[tex]a(b+c)=ab+ac\\\\a(b-c)=ab-ac[/tex]
2. The multiplication of signs:
[tex](+)(+)=+\\(-)(-)=+\\(-)(+)=-\\(+)(-)=-[/tex]
Knowing the above, you can check each if each expression given in the options are equal to the given polynomial [tex]-2y-8+4y[/tex].
Then, you get:
[tex]A.\ -2(y+4)+4y=(-2)(y)+(-2)(4)+4y=-2y-8+4y\\\\\\B.\ 4(-2+y)-2y=(4)(-2)+(4)(y)-2y=-8+4y-2y=-2y-8+4y[/tex]
Therefore, you can conclude that the expressions given in the Option A and the expression given in the Option B, are equal to [tex]-2y-8+4y[/tex]