The sequence an can be defined by the formula an=3(23)n. Which of the following is a recursive definition of the formula?
A. a1=2 an+1=2an3
B. a1=3 an+1=2an3
C. a1=2 an+1=an+23
D. a1=3 an+1=an+23

Respuesta :

Answer:

[tex]a_ {1}=2 \\ a_ {n + 1}= \frac{2}{3} a_ {n } [/tex]

Step-by-step explanation:

The sequence is defined explicitly as

[tex]a_n=3( \frac{2}{3} )^n[/tex]

The first term of this sequence is

[tex]a_1=3( \frac{2}{3} )^1 = 2[/tex]

The recursive formula is given as:

[tex]a_n=ra_ {n - 1}[/tex]

Or

[tex]a_ {n + 1}=ra_ {n }[/tex]

where

[tex]r = \frac{2}{3} [/tex]

is the common ratio.

The recursive formula is therefore:

[tex]a_ {1}=2 \\ a_ {n + 1}= \frac{2}{3} a_ {n }[/tex]