What are the roots of the quadratic equation 2x2+7x+4=0? Select all that apply.
A. −7+17√4
B. −7−17√4
C. −7+17√2
D.−7−17√2
E. 7+17√4
F. 7−17√4
G. 7+17√2
H. 7−17√2

Respuesta :

Answer:

option A and B

[tex]x=\frac{-7+\sqrt{17}} {4}[/tex]

and

[tex]x=\frac{-7-\sqrt{17}} {4}[/tex]

Step-by-step explanation:

we have

[tex]2x^2+7x+4=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]2x^2+7x+4=0[/tex]

so

[tex]a=2\\b=7\\c=4[/tex]

substitute in the formula

[tex]x=\frac{-7\pm\sqrt{7^{2}-4(2)(4)}} {2(2)}[/tex]

[tex]x=\frac{-7\pm\sqrt{17}} {4}[/tex]

so

[tex]x=\frac{-7+\sqrt{17}} {4}[/tex]

and

[tex]x=\frac{-7-\sqrt{17}} {4}[/tex]