How does the value of log Subscript 2 Baseline 100 compare with the value of Log Subscript 6 Baseline 20?
The value of Log Subscript 2 Baseline 100 is about 4 times the value of Log Subscript 6 Baseline 20.
The value of Log Subscript 2 Baseline 100 is about One-fourth times the value of Log Subscript 6 Baseline 20.
The value of Log Subscript 2 Baseline 100 is about 3 times the value of Log Subscript 6 Baseline 20.
The value of Log Subscript 2 Baseline 100 is about One-third times the value of Log Subscript 6 Baseline 20.

Respuesta :

Answer:

  • The value of   [tex]\log_2 100[/tex]   is about 4 times the value of    [tex]\log_6 20[/tex]

Explanation:

1. Change of base rule

       [tex]\log_ab=\dfrac{\log_{10}b}{\log_{10}a}=\dfrac{\log b}{\log a}[/tex]

2. Apply change of base rule to each of the given logarithm

       [tex]\log_2 100=\dfrac{\log 100}{\log 2}\approx 6.64[/tex]

       [tex]\log_6 20=\dfrac{\log 20}{\log 6}\approx 1.67[/tex]

3.Compare

          [tex]\dfrac{6.64}{1.67}\approx 3.97\approx 4[/tex]

4. Conclusion

The value   [tex]\log_2 100[/tex]   is about 4 times the value of   [tex]\log_6 20[/tex]

The value of [tex]\log_2(100)[/tex] is about 4 times the value of [tex]\log_6(20)[/tex].

What are logarithmic expressions?

Logarithmic expressions are the inverse or opposite functions to exponentiation

The logarithmic expressions are given as:

[tex]\log_2(100)[/tex] and [tex]\log_6(20)[/tex]

Start by evaluating both logarithmic expressions.

Using a calculator, we have:

[tex]\log_2(100) = 6.64[/tex]

[tex]\log_6(20) = 1.67[/tex]

Divide both equations

[tex]\frac{\log_2(100)}{\log_6(20)} = \frac{6.64}{1.67}[/tex]

Simplify the fraction

[tex]\frac{\log_2(100)}{\log_6(20)} = 3.97[/tex]

Approximate

[tex]\frac{\log_2(100)}{\log_6(20)} \approx 4[/tex]

This means that,

The value of [tex]\log_2(100)[/tex] is about 4 times the value of [tex]\log_6(20)[/tex].

Read more about expressions at:

https://brainly.com/question/4344214