Respuesta :
Answer:
- The value of [tex]\log_2 100[/tex] is about 4 times the value of [tex]\log_6 20[/tex]
Explanation:
1. Change of base rule
[tex]\log_ab=\dfrac{\log_{10}b}{\log_{10}a}=\dfrac{\log b}{\log a}[/tex]
2. Apply change of base rule to each of the given logarithm
[tex]\log_2 100=\dfrac{\log 100}{\log 2}\approx 6.64[/tex]
[tex]\log_6 20=\dfrac{\log 20}{\log 6}\approx 1.67[/tex]
3.Compare
[tex]\dfrac{6.64}{1.67}\approx 3.97\approx 4[/tex]
4. Conclusion
The value [tex]\log_2 100[/tex] is about 4 times the value of [tex]\log_6 20[/tex]
The value of [tex]\log_2(100)[/tex] is about 4 times the value of [tex]\log_6(20)[/tex].
What are logarithmic expressions?
Logarithmic expressions are the inverse or opposite functions to exponentiation
The logarithmic expressions are given as:
[tex]\log_2(100)[/tex] and [tex]\log_6(20)[/tex]
Start by evaluating both logarithmic expressions.
Using a calculator, we have:
[tex]\log_2(100) = 6.64[/tex]
[tex]\log_6(20) = 1.67[/tex]
Divide both equations
[tex]\frac{\log_2(100)}{\log_6(20)} = \frac{6.64}{1.67}[/tex]
Simplify the fraction
[tex]\frac{\log_2(100)}{\log_6(20)} = 3.97[/tex]
Approximate
[tex]\frac{\log_2(100)}{\log_6(20)} \approx 4[/tex]
This means that,
The value of [tex]\log_2(100)[/tex] is about 4 times the value of [tex]\log_6(20)[/tex].
Read more about expressions at:
https://brainly.com/question/4344214